Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal Flux Crystal Growth Technique in the Determination of Ordered Superstructure in EuInGe

Identifieur interne : 000913 ( Main/Repository ); précédent : 000912; suivant : 000914

Metal Flux Crystal Growth Technique in the Determination of Ordered Superstructure in EuInGe

Auteurs : RBID : Pascal:13-0134280

Descripteurs français

English descriptors

Abstract

High quality single crystals of EuInGe were grown from the reaction run with excess indium. X-ray diffraction investigations showed that EuInGe crystallizes with a pronounced subcell structure, superstructure of the ThSi2 type: Pnma space group, a = 4.9066(10) Å, b = 3.9834(8) Å and c = 15.964(3) Å. However, the powder X-ray pattern reveals weak superstructure reflections, and the inclusion of additional reflections in the analysis points to a new type of structural arrangement, in a monoclinic system, P2,/c space group, a = 7.9663(16) A, b = 4.9119(10) A, c = 16.465(5) Å, and β = 104.03°. Magnetization measurements carried out as a function of temperature show multiple magnetic transitions at 13, 25, 44, and 70 K. In the temperature region above 100 K, the Curie-Weiss law is followed indicating a paramagnetic state of the sample. Magnetic moments deduced from this region suggest europium to be in a divalent state, which was further confirmed by 151Eu Mössbauer spectroscopic measurements. Experiments were accompanied by first-principles density functional calculations using the fullpotential linear muffin-tin orbital method within the local density approximation (LSDA) and including the onsite Coulomb interaction (LSDA+U) for the Eu-f states. The density of states shows a pronounced pseudo gap feature around the Fermi level. The inclusion of a Hubbard U has only a minor effect on the band structure. From the calculated total energies the P21/c structure is favorable by 25 meV per formula unit when compared to the Pnma subcell structure.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0134280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Metal Flux Crystal Growth Technique in the Determination of Ordered Superstructure in EuInGe</title>
<author>
<name sortKey="Subbarao, Udumula" uniqKey="Subbarao U">Udumula Subbarao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur</s1>
<s2>Bangalore, 560064-India</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Bangalore, 560064-India</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sebastian, Ashly" uniqKey="Sebastian A">Ashly Sebastian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur</s1>
<s2>Bangalore, 560064-India</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Bangalore, 560064-India</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rayaprol, Sudhindra" uniqKey="Rayaprol S">Sudhindra Rayaprol</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, R-5 Shed</s1>
<s2>Trombay, Mumbai-400085</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Trombay, Mumbai-400085</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yadav, C S" uniqKey="Yadav C">C. S. Yadav</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>DCMP & MS, Tata Institute of Fundamental Research</s1>
<s2>Mumbai-400005</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Mumbai-400005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Svane, Axel" uniqKey="Svane A">Axel Svane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics and Astronomy, Aarhus University</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>8000 Aarhus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaitheeswaran, G" uniqKey="Vaitheeswaran G">G. Vaitheeswaran</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road</s1>
<s2>Gachibowli, Hyderabad-500046</s2>
<s3>IND</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Gachibowli, Hyderabad-500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peter, Sebastian C" uniqKey="Peter S">Sebastian C. Peter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur</s1>
<s2>Bangalore, 560064-India</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Bangalore, 560064-India</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0134280</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0134280 INIST</idno>
<idno type="RBID">Pascal:13-0134280</idno>
<idno type="wicri:Area/Main/Corpus">001016</idno>
<idno type="wicri:Area/Main/Repository">000913</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1528-7483</idno>
<title level="j" type="abbreviated">Cryst. growth des.</title>
<title level="j" type="main">Crystal growth & design</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Coulomb interaction</term>
<term>Crystal growth</term>
<term>Crystal perfection</term>
<term>Crystal structure</term>
<term>Curie-Weiss law</term>
<term>Density functional method</term>
<term>Density of states</term>
<term>Electronic structure</term>
<term>Europium</term>
<term>Europium additions</term>
<term>Fermi level</term>
<term>Flux growth</term>
<term>Indium</term>
<term>Local density approximation</term>
<term>Magnetic moments</term>
<term>Magnetic transitions</term>
<term>Magnetization</term>
<term>Moessbauer spectroscopy</term>
<term>Monoclinic lattices</term>
<term>Monocrystals</term>
<term>Paramagnetic materials</term>
<term>Powder pattern</term>
<term>Ruthenium nitride</term>
<term>Space groups</term>
<term>Superstructure</term>
<term>Temperature dependence</term>
<term>Titanium nitride</term>
<term>Total energy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode fondant</term>
<term>Croissance cristalline</term>
<term>Surstructure</term>
<term>Perfection cristalline</term>
<term>Indium</term>
<term>Diffraction RX</term>
<term>Structure cristalline</term>
<term>Groupe espace</term>
<term>Diagramme poudre</term>
<term>Réseau monoclinique</term>
<term>Aimantation</term>
<term>Dépendance température</term>
<term>Transition magnétique</term>
<term>Loi Curie Weiss</term>
<term>Monocristal</term>
<term>Nitrure de ruthénium</term>
<term>Nitrure de titane</term>
<term>Matériau paramagnétique</term>
<term>Moment magnétique</term>
<term>Europium</term>
<term>Spectrométrie Mössbauer</term>
<term>Méthode fonctionnelle densité</term>
<term>Approximation densité locale</term>
<term>Interaction coulombienne</term>
<term>Addition europium</term>
<term>Densité état</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Structure bande</term>
<term>Energie totale</term>
<term>RuN</term>
<term>In</term>
<term>8110F</term>
<term>8110</term>
<term>6166</term>
<term>7530K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High quality single crystals of EuInGe were grown from the reaction run with excess indium. X-ray diffraction investigations showed that EuInGe crystallizes with a pronounced subcell structure, superstructure of the ThSi
<sub>2</sub>
type: Pnma space group, a = 4.9066(10) Å, b = 3.9834(8) Å and c = 15.964(3) Å. However, the powder X-ray pattern reveals weak superstructure reflections, and the inclusion of additional reflections in the analysis points to a new type of structural arrangement, in a monoclinic system, P2,/c space group, a = 7.9663(16) A, b = 4.9119(10) A, c = 16.465(5) Å, and β = 104.03°. Magnetization measurements carried out as a function of temperature show multiple magnetic transitions at 13, 25, 44, and 70 K. In the temperature region above 100 K, the Curie-Weiss law is followed indicating a paramagnetic state of the sample. Magnetic moments deduced from this region suggest europium to be in a divalent state, which was further confirmed by
<sup>151</sup>
Eu Mössbauer spectroscopic measurements. Experiments were accompanied by first-principles density functional calculations using the fullpotential linear muffin-tin orbital method within the local density approximation (LSDA) and including the onsite Coulomb interaction (LSDA+U) for the Eu-f states. The density of states shows a pronounced pseudo gap feature around the Fermi level. The inclusion of a Hubbard U has only a minor effect on the band structure. From the calculated total energies the P2
<sub>1</sub>
/c structure is favorable by 25 meV per formula unit when compared to the Pnma subcell structure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1528-7483</s0>
</fA01>
<fA03 i2="1">
<s0>Cryst. growth des.</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Metal Flux Crystal Growth Technique in the Determination of Ordered Superstructure in EuInGe</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SUBBARAO (Udumula)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEBASTIAN (Ashly)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAYAPROL (Sudhindra)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YADAV (C. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SVANE (Axel)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAITHEESWARAN (G.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PETER (Sebastian C.)</s1>
</fA11>
<fA14 i1="01">
<s1>New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur</s1>
<s2>Bangalore, 560064-India</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, R-5 Shed</s1>
<s2>Trombay, Mumbai-400085</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>DCMP & MS, Tata Institute of Fundamental Research</s1>
<s2>Mumbai-400005</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics and Astronomy, Aarhus University</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road</s1>
<s2>Gachibowli, Hyderabad-500046</s2>
<s3>IND</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>352-359</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27261</s2>
<s5>354000173257710440</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>56 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0134280</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Crystal growth & design</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High quality single crystals of EuInGe were grown from the reaction run with excess indium. X-ray diffraction investigations showed that EuInGe crystallizes with a pronounced subcell structure, superstructure of the ThSi
<sub>2</sub>
type: Pnma space group, a = 4.9066(10) Å, b = 3.9834(8) Å and c = 15.964(3) Å. However, the powder X-ray pattern reveals weak superstructure reflections, and the inclusion of additional reflections in the analysis points to a new type of structural arrangement, in a monoclinic system, P2,/c space group, a = 7.9663(16) A, b = 4.9119(10) A, c = 16.465(5) Å, and β = 104.03°. Magnetization measurements carried out as a function of temperature show multiple magnetic transitions at 13, 25, 44, and 70 K. In the temperature region above 100 K, the Curie-Weiss law is followed indicating a paramagnetic state of the sample. Magnetic moments deduced from this region suggest europium to be in a divalent state, which was further confirmed by
<sup>151</sup>
Eu Mössbauer spectroscopic measurements. Experiments were accompanied by first-principles density functional calculations using the fullpotential linear muffin-tin orbital method within the local density approximation (LSDA) and including the onsite Coulomb interaction (LSDA+U) for the Eu-f states. The density of states shows a pronounced pseudo gap feature around the Fermi level. The inclusion of a Hubbard U has only a minor effect on the band structure. From the calculated total energies the P2
<sub>1</sub>
/c structure is favorable by 25 meV per formula unit when compared to the Pnma subcell structure.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E30K</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode fondant</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Flux growth</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método fundente</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Surstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Superstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Superestructura</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Perfection cristalline</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Crystal perfection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Perfección cristalina</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Groupe espace</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Space groups</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diagramme poudre</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Powder pattern</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Diagrama polvo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau monoclinique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Monoclinic lattices</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Transition magnétique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnetic transitions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Loi Curie Weiss</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Curie-Weiss law</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de ruthénium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ruthenium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Rutenio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nitrure de titane</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Titanium nitride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Titanio nitruro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Matériau paramagnétique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Paramagnetic materials</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Europium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Europium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Spectrométrie Mössbauer</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Moessbauer spectroscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Approximation densité locale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Local density approximation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Aproximación densidad local</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Interaction coulombienne</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Coulomb interaction</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Interacción coulombiana</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Addition europium</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Europium additions</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>40</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Energie totale</s0>
<s5>41</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Total energy</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>RuN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8110F</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8110</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>7530K</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0134280
   |texte=   Metal Flux Crystal Growth Technique in the Determination of Ordered Superstructure in EuInGe
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024